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Dislocations alter perfect crystalline order and produce anisotropic broadening

of the X-ray diffraction profiles, which is described by the dislocation contrast

factor. Owing to the lack of suitable mathematical tools to deal with dislocations

in crystals of any symmetry, contrast factors are so far only known for a few slip

systems in high-symmetry phases and little detail is given in the literature on the

calculation procedure. In the present paper a general approach is presented for

the calculation of contrast factors for any dislocation configuration and any

lattice symmetry. The new procedure is illustrated with practical examples of

hexagonal metals and some low-symmetry mineral phases.

1. Introduction

The interest in dislocation effects on diffraction-line broad-

ening dates back to the pioneering work of Wilson, whose

theoretical investigations started even before there was direct

evidence of the existence of dislocations (Wilson, 1949, 1950).

From then on, the local atomic displacement produced by the

dislocation strain field was recognized as one of the main

sources of ‘strain broadening’ of the line profiles.

The possibility of modeling dislocation effects and in

particular of separating their contribution from that of the

crystalline domain size was well established in the 1950s

(Williamson & Hall, 1953). However, Krivoglaz first realized

the importance of the distribution of dislocations in the early

1960s (Krivoglaz & Ryaboshapka, 1963): dislocation effects

cannot be described by considering the effect of the closest

dislocations only (Wilson, 1949, 1950), but proper account is

required for the displacement due to – virtually – all disloca-

tions in the crystal, including their arrangement, interaction

and orientation (Krivoglaz & Ryaboshapka, 1963; Krivoglaz et

al., 1983).

Further developments were proposed by Wilkens in the late

1960s (Wilkens, 1970a,b), leading to the Krivoglaz–Wilkens

(KW) theory which is nowadays considered the standard for

studying dislocation effects in diffraction-line profile analysis

(LPA) [see e.g. Mittemeijer & Scardi (2004) and references

therein]. According to the KW theory, the Fourier transform

of a peak profile depends on the Burgers vector bv of a given

hUVWifHKLg slip system, on the dislocation density �, on

the arrangement parameter Re (effective outer cut-off

radius), and on the so-called contrast (or orientation) factor

Chkl (Wilkens, 1970a,b). The latter is the main parameter

describing the effect of the dislocation strain field

projected along the diffraction scattering direction

(Armstrong et al., 2006), i.e., the way dislocations are ‘seen’

through diffraction.

Any practical application of the KW theory requires

contrast-factor calculations for the specific slip system and

elastic medium, a rather complex numerical procedure if

elastic anisotropy is considered. Contrast-factor calculation

was pioneered by Krivoglaz and Ryaboshapka, who discussed

the elastically isotropic case (Krivoglaz & Ryaboshapka, 1963)

[mistakes in the original 1963 paper were corrected in

Krivoglaz et al. (1983)]. The importance of considering elastic

anisotropy was recognized by Ryaboshapka (1965), but a

comprehensive compilation of contrast factors appeared only

in 1987, for the specific case of copper (Wilkens, 1987).

The first procedure for contrast-factor calculation in highly

symmetric lattices was proposed at the end of the 1980s by

Klimanek and Kužel (KK) (Klimanek & Kužel, 1988; Kužel &

Klimanek, 1988), and can be considered as the only relevant

theoretical contribution in this field until the end of the 20th

century. In the following years, several collections of contrast

factors obtained by the KK procedure were proposed (Ungár

et al., 1999; Dragomir & Ungár, 2002a,b; Borbély et al., 2003),

but in most cases little detail of the calculation procedure was

given. More recently, Armstrong & Lynch (2004) made an

effort to clarify the calculation methodology, illustrating the

KK procedure step-by-step for some examples of face-

centered and body-centered cubic materials. Differences

among results in the various papers can be attributed to errors

[some of which are discussed in Martinez-Garcia (2008)] and

different numerical approximations.

The present paper can be considered as a generalization of

previous work (Krivoglaz & Ryaboshapka, 1963; Krivoglaz et

al., 1983; Wilkens, 1970a,b, 1987; Klimanek & Kužel, 1988;

Kužel & Klimanek, 1988; Armstrong & Lynch, 2004) for

calculating contrast factors for any slip system and crystal-



lographic symmetry in elastically anisotropic crystals and

polycrystals. The proposed procedure is here illustrated by

applications to some hexagonal metals and to low-symmetry

mineral phases. It can be included in state-of-the-art LPA

methods and used to extract dislocation parameters from

broadened X-ray diffraction profiles.

2. Mathematical background

2.1. General coordinate systems and their relationships

Three reference systems, shown in Fig. 1 and described in

the following, are conveniently introduced for contrast-factor

calculations, namely the dislocation slip system

Sfek; k ¼ 1; 2; 3g, the crystal lattice Cfa; b; cg and an ortho-

normal frame Ofi; j; kg.

Dislocation strain field calculations are done in S, suitably

writing the fek; k ¼ 1; 2; 3g basis in terms of the unit-cell

parameters fa; b; c; �; �; �g. The common orthonormal frame

O is employed, written in terms of a; b; c as i ¼ a=a, j ¼ k� i

and k ¼ c�=c� (� denotes reciprocal-lattice quantities), or

equivalently as

i

j

k

2
4

3
5 ¼ M

a

b

c

2
4

3
5; ð1Þ

where the matrix

M ¼

1=a 0 0

� cosð�Þ=½a sinð�Þ� 1=½b sinð�Þ� 0

a� cosð��Þ b� cosð��Þ c�

2
4

3
5

obeys the relation Gm ¼ M�1ðM�1Þ
T
¼ M�1ðMTÞ

�1, Gm being

the metric tensor of the crystal lattice,

Gm ¼

a2 ab cosð�Þ ac cosð�Þ
ab cosð�Þ b2 bc cosð�Þ
ac cosð�Þ bc cosð�Þ c2

2
4

3
5:

Let f�k
i ; ði; kÞ ¼ 1; 2; 3g be the coordinates of the unit

vectors fek; k ¼ 1; 2; 3g on fi; j; kg. Following these conven-

tions, slip unit vectors can be written as

e1

e2

e3

2
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3
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3
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5: ð2Þ

According to the above equation, the problem consists of

finding the matrix P which transforms the basis fi; j; kg into

fe1; e2; e3g. By knowing the dislocation slip system

(hUVWifHKLg) and character (�), the coefficients �k
i of the

matrix P can be determined as follows.

(a) The vector n ¼ Ha� þ Kb� þ Lc�, with coordinates

[H;K;L] in the reciprocal basis ½a�; b�; c��T, is perpendicular

to the slip plane with Miller indices (HKL) (Fig. 1). The

coordinates f�2
j ; j ¼ 1; 2; 3g of e2 on fi; j; kg can thus be

determined as

�2
1

�2
2

�2
3

2
4

3
5 ¼ 1

jnj
M

H

K

L

2
4

3
5; jnj ¼ n �G�m � n

T
� �1=2

; ð3Þ

where G�m ¼ G�1
m is the metric tensor of the reciprocal lattice.

(b) The evaluation of the coordinates f�3
j ; j ¼ 1; 2; 3g of e3

in fi; j; kg requires a previous reconstruction of the line

direction from the slip-system data. The normalized coordi-

nates of the Burgers vector in the orthogonal basis f�b
1 ; �

b
2 ; �

b
3g

are obtained as

�b
1

�b
2

�b
3

2
4

3
5 ¼ 1

jbvj
MT
� ��1

U

V

W

2
4

3
5; jbvj ¼ bv �G � b

T
v

� �1=2
: ð4Þ

The coordinates f�3
j ; j ¼ 1; 2; 3g of e3 in O are in turn

obtained after rotation of f�b
1 ; �

b
2 ; �

b
3g by an angle � using the

rotation matrix Rð�; e2Þ (Fig. 1) (Giacovazzo et al., 1992),

�3
1

�3
2

�3
3
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4

3
5 ¼ Rð�; e2Þ

�b
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�b
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�b
3

2
4

3
5; ð5Þ

where

Rð�; e2Þ ¼

2ð�2
1Þ

2 sin2
ð�=2Þ þ cosð�Þ 2�2

1�
2
2 sin2
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3
75: ð6Þ

(c) The remaining components of e1 on fi; j; kg,

f�1
j ; j ¼ 1; 2; 3g are obtained as the cross product of the two

vectors already calculated,
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Figure 1
Unit cell of a general crystal with a straight dislocation ðbv; lÞ, identified in
both the crystallographic C and orthogonal O frames (fa; b; cg and
fi; j; kg, respectively). The dislocation line vector l lies on its slip plane
(HKL) and the reciprocal vector n ¼ Ha� þ Kb� þ Lc� is normal to
(HKL). The S reference is chosen in such a way that e2 ¼ n=n, e3 ¼ l and
e1 ¼ e2 � e3. The vector l is obtained by rotating the Burgers vector bv

clockwise by an angle � (dislocation character) around e2. ’ denotes the
polar angle of the vector r on the fe1; e2g plane.
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(d) Finally, the representation of the unit vectors

fei; i ¼ 1; 2; 3g in the C reference frame can be obtained as

e1

e2

e3

2
4

3
5 ¼ PM

a

b

c

2
4

3
5: ð8Þ

This approach allows a straightforward identification of the

dislocation reference frame S in crystals of any symmetry,

through the sole use of the Gm, M and Rð�; e2Þ matrices

carrying the metric information. This is a substantial gener-

alization of the work of Klimanek & Kužel (1988), Kužel &

Klimanek (1988) and Armstrong & Lynch (2004), leading to a

simpler procedure for contrast-factor calculation.

2.2. Contrast factor for a given slip system

According to Klimanek & Kužel (1988) and Kužel &

Klimanek (1988), the contrast factor can be conveniently

written as the product of two 4-rank tensors, namely the

geometrical Gijmn and elastic Eijmn components,

Chkl ¼
P3

i;m

P2

j;n

GijmnEijmn: ð9Þ

Even if equation (9) is general in character, its application has

so far been limited to cubic and hexagonal crystals, due to a

lack of mathematical tools for dealing with dislocations in

anisotropic crystals of any symmetry. The use of equation (9)

is here extended, providing general expressions for the tensors

Gijmn and Eijmn as a function of the unit-cell parameters and

elastic properties of crystals.

2.2.1. Determining Gijmn. The Gijmn tensor is obtained from

the direction cosines, �i ¼ ðd
�=d�Þ � ei, of the angles between

the diffraction vector and the axes of the S system:

Gijmn ¼ �i�j�m�n; ði;mÞ ¼ 1; 2; 3; ðj; nÞ ¼ 1; 2: ð10Þ

By using the formalism introduced in the previous section,

direction cosines are written as

�2 ¼
½h; k; l� �G�m � ½H;K;L�T

ð½H;K;L� �G�m � ½H;K;L�TÞ
1=2
ð½h; k; l� �G�m � ½h; k; l�TÞ

1=2

�3 ¼
½h; k; l� �MT � Rð�; e2Þ � ½M

T �
�1
� ½U;V;W�T

ð½U;V;W� �Gm � ½U;V;W�TÞ1=2
ð½h; k; l� �G�m � ½h; k; l�TÞ1=2

�1 ¼ ð1� �
2
2 � �

2
3Þ

1=2; ð11Þ

hkl being general Miller indices.

In order to evaluate the �i, we thus need to know the slip

plane (HKL), the Burgers vector [UVW], the dislocation

character � and the matrices Gm, M and Rð�; e2Þ carrying

information on the crystal’s metric.

2.2.2. Determining Eijmn. The components of the elastic part

of the dislocation contrast factor, Eijmn, are defined by the

integral

Eijmn ¼ ð1=�Þ
R2�
0

�ijð’Þ�mnð’Þ d’; ð12Þ

where the quantities �ij are proportional to the partial deri-

vatives @ui=@xj of the displacement field of the dislocation

(Klimanek & Kužel, 1988) and ’ is the polar angle (Fig. 1). In

determining Eijmn from equation (12), it is necessary first to

evaluate the displacement field u of an isolated dislocation in

an elastically anisotropic medium. Several routes for obtaining

the solutions for u have been proposed (Lekhnitskii, 1963;

Ting, 1996). However, as was demonstrated recently

(Martinez-Garcia et al., 2007, 2008), the Stroh formalism

(Stroh, 1958, 1962; Ting, 1996) is more convenient in finding

expressions for Eijmn, as it provides the solution for u in terms

of the eigenvalues p� and the eigenvectors (A�;L�) of a linear

eigenvalue problem in the elastic constant representation. The

alternative approach proposed by Lekhnitskii (1963) and

Teodosiou (1982), employed previously in contrast-factor

calculations, leads to complex and large-sized solutions even in

the simplest cases.

In this section the Stroh formalism is used to obtain a

general expression for Eijmn as function of the eigensolutions

of the Stroh eigenvalue problem. Although complex, p� and

(A�;L�) can be considered as fundamental materials’

constants depending on the elastic stiffness and the orienta-

tion of the dislocation line represented in the crystal reference

frame C.

Let us write the mth component of the displacement field as

a function of the coordinates x1 and x2 on the fe1; e2g plane

(Fig. 1) as

umðx1; x2Þ ¼ ðbv=2�ÞIm
P3

�¼1

Am�D� lnðx1 þ p�x2Þ

� �
; ð13Þ

where

D� ¼ �
ðL� � bvÞ

bvðA� � L�Þ
;

Im½ � denotes the imaginary part operator and bv ¼ jbvj is the

Burgers vector modulus.

According to equation (12), to determine Eijmn the

�mnðx1; x2Þ functions related to the gradient of displacement

need to be calculated:

�mnðx1; x2Þ ¼
2�r

bv

@umðx1; x2Þ

@xn

; r ¼ ðx2
1 þ x2

2Þ
1=2: ð14Þ

Provided that the logarithm is a smooth function far from the

dislocation core, substitution of equation (13) into equation

(14) yields

�mnðx1; x2Þ ¼ r Im

�X3

�¼1

Am�D�

@

@xn

lnðx1 þ p�x2Þ

�
: ð15Þ

Performing the differentiation in equation (15) and with a

subsequent transformation to polar coordinates

fx1 ¼ r cosð’Þ; x2 ¼ r sinð’Þg, we find that
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�mnð’Þ ¼ Im

�X3

�¼1

Am�D�pðn�1Þ
�

cosð’Þ þ p� sinð’Þ

�
: ð16Þ

By inserting equation (16) into equation (12), the following

expression for Eijmn is obtained:

Eijmn ¼
P3

�;�0¼1

��0
� �mn�0

ij�

�
cosð�mn

� þ x�Þ cosð��0
ij � y�

0

� Þ

þ sinð�mn
� Þ sinð��0

ij þ z�
0

� Þ
�
; ð17Þ

where

��0

� ¼

jp�j

2Im2½p��
if � ¼ �0

jp�j

Im½p��

�
Fðp�Þ

Qðp�Þ

�1=2

if � 6¼ �0

8>>><
>>>:

�mn�0

ij� ¼ 2jAi�jjAm�0 jjD�jjD�0 jjp�j
j�1
jp�0 j

n�1: ð18Þ

Explicit expressions for Fðp�Þ, Qðp�Þ, x�, y�
0

� , z�
0

� and �mn
� are

reported in Appendix A. The complex quantities p� and

ðA�;L�Þ are the eigensolutions of the fundamental elasticity

matrix N (Ting, 1996), obeying the eigenrelation

N
A�

L�

� �
¼ p�

A�

L�

� �
: ð19Þ

Once the elastic eigenproblem in equation (19) is solved and

therefore the eigensolutions p� and ðA�, L�Þ are known,

equations (17) and (18) provide the solution for Eijmn without

recourse to the numerical methods used in the literature to

date to solve the integral in equation (12).

Moreover, when dislocations are favorably oriented with

respect to the symmetry axes of the unit cell, analytical

eigensolutions can be obtained. Equation (17) can then be

reduced to simple polynomial functions of the crystal’s elastic

properties (Martinez-Garcia et al., 2007, 2008).

Equations (11) and (17) are the general solutions for Gijmn

and Eijmn which, inserted in equation (9), allow a direct

determination of the contrast factor of dislocations of any slip

system.

2.3. Average contrast factor

In the case of polycrystalline materials with randomly

oriented grains, the dislocation contrast factor has to be

averaged over the N crystallographically equivalent (i.e.

indistinguishable from a powder point of view) slip systems,

Chkl ¼ ð1=NÞ
PN

i

Ci
hkl; ð20Þ

Ci
hkl being the contrast factor corresponding to the ith slip

system. Therefore, a prerequisite to the determination of Chkl

is the generation of all S reference frames equivalent to a

given one.

In the previous section it was shown how to build S in the

general case, given the unit-cell parameters, slip plane,

Burgers vector and dislocation character. The minimum

requirement for finding the set of equivalent slip systems is

knowledge of the symmetry operations sufficient to obtain any

vector equivalent to a given one [i.e. the Laue point group for

the given lattice (Sands, 1982)].

The required symmetry information (point group and

Bravais lattice) is contained in the three-dimensional space

group. In particular, the space-group generators obtained

from the space-group symbol [using the procedure of Shmueli

(1984)] allow all slip systems equivalent to a given one to be

evaluated. In fact, only a subset of point-group operations is

needed. The point-group operators and unit vectors

fek; k ¼ 1; 2; 3g, suitably referred to the common O frame, are

used to generate all equivalent slip systems.

The number of calculations can be reduced by considering

that (bv; l) and (�bv;�l) represent the same straight-line

dislocation and thus fe1; e2; e3g, f�e1;�e2; e3g, f�e1; e2;�e3g

and fe1;�e2;�e3g are crystallographically equivalent slip

coordinate systems (Bollman, 1970).

Sets of equivalent S coordinate systems for the most

common slip systems are tabulated in Martinez-Garcia (2008).

The average contrast factor can finally be calculated by

means of equations (20), (17), (11) and (9). To further help the

reader, Fig. 2 shows a schematic representation of the whole

procedure.
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Figure 2
Schematic representation of the algorithm proposed for the average
contrast factor computation. Input variables are used to build a single slip
coordinate system on the dislocation line (1), in which the elastic
eigenproblem is solved (2). Space-group information is used to generate
all crystallographically equivalent slip coordinate systems (3). The
eigensolutions are used to evaluate single contrast factors for each
member of the equivalent slip coordinate system set (4). Finally an
average contrast factor is determined (5).



3. Applications

3.1. Comparison with previous works

A comparison with previous results is only possible for

some materials with cubic or hexagonal symmetry, as there are

no literature data on lower-symmetry phases. The proposed

procedure was thus applied to several cases of slip systems in

cubic or hexagonal metals and compared with results from

ANIZC (Borbély et al., 2003) or those published by KK

(Klimanek & Kužel, 1988; Kužel & Klimanek, 1988).

By employing both the elastic constants and the c/a ratios

listed in Table 1 for Zn and Mg, the geometrical (Gijmn) and

elastic (Eijmn) components of Chkl were determined numeri-

cally for the most common slip systems reported for hexagonal

lattices (Klimanek & Kužel, 1988). Averaged contrast factors

were then determined by using equations (9) and (20).

To compare our results with those of KK, average contrast

factors for Mg and Zn are shown in Fig. 3 as a function of 	, the

angle between the diffraction vector d� and the c axis of the

hexagonal lattice:

cos 	 ¼
ð3=2Þ1=2

ða=cÞl

½2ðh2 þ hkþ k2Þ þ ð3=2Þða=cÞ
2

l2�
1=2
: ð21Þ
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Table 1
Anisotropic elastic constants (GPa) and c/a ratio for Zn and Mg.

Material c11 c12 c13 c33 c44 c/a

Zn 165.0 31.0 50.0 62.0 39.6 1.86
Mg 59.2 25.7 21.4 61.4 16.4 1.62

Figure 3
Dependence of the average contrast factor, Chkl on the angle 	 between the diffraction vector d� and the c axis of the hexagonal unit cell for (a) Mg and
(b) Zn. Slip systems are identified as in Klimanek & Kužel (1988) and Kužel & Klimanek (1988) with a number–letter code. Screw: 1s 1=3h2110if0001g, 2s
1=3h2113if0110g; edge: 1 1=3h2110if0001g, 2a 1=3h2110if0110g, 3a 1=3h2110if0111g, 3b 1=3h2113if1011g and 3c 1=3h2113if2112g. Open circles correspond
to the calculations done under the elastic isotropy approximation.

Figure 4
Dependence of the average contrast factor, Chkl , of edge dislocations on the c/a ratio for some typical reflections. (a) 1=3h2110if0001g basal slip system.
(b) 1=3h2113if1121g pyramidal slip system.



The results shown in Fig. 3 match those reported by KK very

well [see Figs. 1a and b in Kužel & Klimanek (1988)], the only

slight difference being visible for the 1=3h2113if0110g (2s) slip

system in the case of elastically anisotropic Zn. Further

discrepancies with the KK results are reported in Martinez-

Garcia (2008).

As expected, there are large differences among the shapes

of the Chkl ¼ f ð	Þ functions associated with different slip

systems and/or dislocation characters (i.e. edge and screw

orientations).

Using these numerical results, the influence of the c/a ratio

on Chkl for some typical reflections hkl was also investigated.

Fig. 4 shows the dependence of Chkl on the c/a ratio for the

1=3h2110if0001g and 1=3h2113if1121g slip systems taking into

account dislocations with edge orientations. It is interesting to

see how the values of Chkl (thus the diffraction broadening)

varies with the c/a ratio. Changes in the contrast-factor

behavior are particularly evident for the (h00), (hh0) and (00l)

reflections, where values are deeply influenced by dislocation

geometry changes, e.g. from basal 1=3h2110if0001g to pyra-

midal 1=3h2113if1121g slip.

3.2. Lower-symmetry minerals

3.2.1. Forsterite (a-Mg2SiO4). Forsterite is one of the

dominant minerals in the upper mantle of the Earth (30 to

410 km depth). Its rheological behavior is therefore crucial for

the understanding of the deformation processes at a depth

where the convective flow of the mantle is coupled to the

movement of the lithospheric plates that constitute the

uppermost 100 km of the Earth’s crust. The development of

texture and consequent anisotropy of physical parameters

during plastic deformation of forsterite is of special interest,

since they can be directly compared to geophysical observa-

tions of seismic wave velocities.
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Table 2
Eigenvalues and elastic component for edge and screw dislocations in �-Mg2SiO4 for the h100if010g slip system.

Character p1 p2 p3 E

Edge 1.543i 0.829i 1.104i

0:473 0 0 0 �0:079 0

0:605 0 �0:868 0 0

0 0 0 0

2:189 0 0

0:134 0

0

2
6666664

3
7777775

Screw 1.306i 0.830i 1.002i

0 0 0 0 0 0

0 0 0 0 0

0:997 0 0 0

0 0 0

0 0

1:002

2
6666664

3
7777775

Table 3
Eigenvalues and elastic component for edge and screw dislocations in �-Mg2SiO4 for the h001if100g slip system.

Character p1 p2 p3 E

Edge 1.385i 0.611i 0.908i

0:561 0 0 0 �0:055 0

0:475 0 �0:692 0 0

0 0 0 0

1:834 0 0

0:065 0

0

2
6666664

3
7777775

Screw 1.205i 0.648i 0.906i

0 0 0 0 0 0

0 0 0 0 0

1:104 0 0 0

0 0 0

0 0

0:906

2
6666664

3
7777775



Forsterite is orthorhombic (space group Pbnm), with cell

parameters a = 4.775, b = 10.190 and c = 5.978 Å. The structure

is usually described as the coupling between SiO2�
4 tetrahedra

and Mg2+ cations (Fig. 5a) (Fujino et al., 1981). Elastic

constants for this mineral have been reported by Bass (1995).

Slip systems reported in the literature for this mineral are

h100if010g, h001ifhk0g and h100if001g (Bai et al., 1991; Nicolas

et al., 1973; Raleigh, 1968). According to equation (11), the

f�k; k ¼ 1; 2; 3g elements in the case of edge orientation have

the form

�1 ¼
h

½h2 þ ða=bÞ
2
k2 þ ða=cÞ

2
l2�

1=2

�2 ¼
ða=bÞk

½h2 þ ða=bÞ
2
k2 þ ða=cÞ

2
l2�

1=2

�3 ¼
ða=cÞl

½h2 þ ða=bÞ2k2 þ ða=cÞ2l2�
1=2
; ð22Þ

�1 ¼
ða=cÞl

½h2 þ ða=bÞ
2
k2 þ ða=cÞ

2
l2�

1=2

�2 ¼
h

½h2 þ ða=bÞ2k2 þ ða=cÞ2l2�
1=2

�3 ¼
ða=bÞk

½h2 þ ða=bÞ
2
k2 þ ða=cÞ

2
l2�

1=2
ð23Þ

and

�1 ¼
ða=cÞl

½h2 þ ða=bÞ
2
k2 þ ða=cÞ

2
l2�

1=2

�2 ¼
ða=bÞk

½h2 þ ða=bÞ2k2 þ ða=cÞ2l2�
1=2

�3 ¼ �
h

½h2 þ ða=bÞ
2
k2 þ ða=cÞ

2
l2�

1=2
ð24Þ

for h100if010g, h001if100g and h001if010g, respectively. The �
values can be used to determine the symmetrical matrix G,

defining the geometrical component of the contrast factor.

Direction cosines for screw orientations can be obtained from

the edge counterparts by exchanging ð�1 !��3Þ and

ð�3 ! �1Þ.

The elastic component of the contrast factor, E, can be

determined by using equations (17) and (18), once the Stroh

eigenvalue problem [cf. equation (19)] has been solved.

Following this approach, both the eigenvalues p� and the

matrix E of forsterite were numerically calculated. Results are
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Table 4
Eigenvalues and elastic component for edge and screw dislocations in �-Mg2SiO4 for the h001if010g slip system.

Character p1 p2 p3 E

Edge 1.306i 0.830i 1.002i

0:517 0 0 0 �0:117 0

0:561 0 �0:791 0 0

0 0 0 0

2:023 0 0

0:119 0

0

2
6666664

3
7777775

Screw 1.543i 0.829i 1.104i

0 0 0 0 0 0

0 0 0 0 0

0:906 0 0 0

0 0 0

0 0

1:104

2
6666664

3
7777775

Figure 5
Projections along the a and b axes of the structures of (a) forsterite,
�-Mg2SiO4, and (b) diopside, CaMgSi2O6, respectively.



reported in Tables 2, 3 and 4 for h100if010g, h001if100g and

h001if010g, respectively, for the cases of screw and edge

orientations.

Average contrast-factor values for forsterite were then

numerically determined by using the above results together

with equations (20) and (9). Tables 5, 6 and 7 show forsterite

Chkl values calculated for the major reflections and for each of

the investigated slip systems. The lattice parameters and

elastic constants used in the calculations are also given in

Table 5.

3.2.2. Muscovite and diopside. Among the materials

showing monoclinic symmetry, diopside (CaMgSi2O6) and

muscovite [KAl3Si3O10(OH)2] are minerals whose plastic

properties have been thoroughly examined in the literature

(Bass, 1995).

Diopside is an important rock-forming mineral of the

pyroxene group, crystallizing in space group C2/c with unit-

cell parameters a = 9.746, b = 8.899, c = 5.251 Å and � =

105.63� (Anthony et al., 2003) (Fig. 5b). Muscovite is the most

common mica and is typically found as massively crystalline

material in ‘books’ or in flaky grains as a constituent of many

rocks. It also crystallizes in space group C2/c and is composed

of aluminium silicate sheets weakly bonded together by layers

of potassium ions. The unit-cell parameters for muscovite are a

= 5.19, b = 9.04, c = 20.08 Å, � = 95.5� (Fig. 6) (Anthony et al.,

2003).

The major slip systems reported in the literature for these

minerals are ½001�ð100Þ for diopside (Kollé & Blacic, 1982),

and ½100�ð001Þ and ½110�ð001Þ for muscovite (Meike, 1989).

Direction cosines can be determined for these minerals by

using equation (11). For example, for dislocation lines with

screw orientation in muscovite (� = 95.5�), the f�k; k ¼ 1; 2; 3g

elements in equation (11) take the form

�1 ¼
½1þ ðb=aÞ2��3=2

½ðb=aÞ3h� ða=bÞk� ðb=aÞðh� kÞ�

½1:009h2 þ ða=bÞ
2
k2 þ 0:193ða=cÞhl þ 1:009ða=cÞ

2
l2�

1=2

�2 ¼
0:096hþ 1:004ða=cÞl

½1:009h2 þ ða=bÞ2k2 þ 0:193ða=cÞhl þ 1:009ða=cÞ2l2�
1=2

�3 ¼
½1þ ðb=aÞ2��1=2

ðhþ kÞ

½1:009h2 þ ða=bÞ
2
k2 þ 0:193ða=cÞhl þ 1:009ða=cÞ

2
l2�

1=2

for the ½110�ð001Þ slip system.
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Table 5
Average contrast factor for edge and screw dislocations in �-Mg2SiO4 for
the h100if010g slip system.

Lattice parameters: a = 4.775, b = 10.190, c = 5.978 Å; elastic stiffnesses: C11 =
328, C22 = 200, C33 = 235, C44 = 66.7, C55 = 81.3, C66 = 80.9, C12 = 69, C13 = 69,
C23 = 73 GPa.

Chkl Chkl

hkl Edge Screw hkl Edge Screw

020 0.1340 0 150 0.2248 0.1315
110 0.4548 0.1471 202 0.1773 0.2367
021 0.0449 0 113 0.0141 0.1235
101 0.1773 0.2367 151 0.1864 0.1216
111 0.1970 0.2480 222 0.1970 0.2480
120 0.3876 0.2494 240 0.3876 0.2494
121 0.2165 0.2400 123 0.0237 0.1145
002 0 0 241 0.3295 0.2503
130 0.3137 0.2243 061 0.1147 0
131 0.2129 0.2012 232 0.2097 0.2491
112 0.0480 0.1952 133 0.0367 0.1021
041 0.0960 0 160 0.2016 0.1006
210 0.4693 0.0490 152 0.1159 0.0991

Table 6
Average contrast factor for edge and screw dislocations in �-Mg2SiO4 for
the h001if100g slip system.

Chkl Chkl

hkl Edge Screw hkl Edge Screw

020 0 0 150 0.0015 0
110 0.0440 0 202 0.3022 0.2149
021 0.0993 0.2690 113 0.4793 0.1366
101 0.3022 0.2149 151 0.01610 0.0873
111 0.2353 0.2117 222 0.2353 0.2117
120 0.0186 0 240 0.01864 0
121 0.1285 0.1884 123 0.4001 0.1858
002 0.5611 0 241 0.0506 0.0717
130 0.0074 0 061 0.0031 0.0762
131 0.0624 0.1504 232 0.1788 0.2030
112 0.4072 0.2064 133 0.3058 0.2333
041 0.0132 0.1436 160 0.008 0
210 0.0586 0 152 0.0710 0.2172

Table 7
Average contrast factor for edge and screw dislocations in �-Mg2SiO4 for
the h001if010g slip system.

Chkl Chkl

hkl Edge Screw hkl Edge Screw

020 0.1198 0 150 0.0855 0
110 0.0038 0 202 0.0775 0.2149
021 0.3184 0.2690 113 0.3708 0.1366
101 0.0775 0.2149 151 0.1277 0.0873
111 0.0928 0.2117 222 0.0928 0.2117
120 0.0259 0 240 0.0259 0
121 0.1147 0.1884 123 0.3608 0.1858
002 0.5171 0 241 0.0508 0.0717
130 0.0525 0 061 0.1584 0.0762
131 0.1252 0.1504 232 0.1094 0.2030
112 0.2660 0.2064 133 0.3440 0.2333
041 0.1976 0.1436 160 0.9427 0
210 0.0003 0 152 0.2161 0.2172

Figure 6
Projection along the b axis of the structure of muscovite,
KAl3Si3O10(OH)2. The structure is formed from a sandwich of two
tetrahedral layers composed of sheets of linked Si4þO2�

4 tetrahedra
joined by a layer of Al3+ ions octahedrally coordinated by O atoms and
O—H groups. Single layers of K+ cations appear between two tetrahedral
layers.



Direction cosines for edge orientations can be obtained

from the screw ones by exchanging ð�1 !��3Þ and ð�3 ! �1Þ.

By means of the above expressions, the geometrical compo-

nent of the contrast factor, G, can be readily determined.

Tables 8 and 9 show the numerically calculated eigenvalues

and the E matrices for the ½001�ð100Þ and ½100�ð001Þ slip

systems in diopside and muscovite, respectively. Both screw

and edge orientations were assumed.

It is worth emphasizing that, in this case, each slip system is

only crystallographically equivalent to itself, as prescribed by

the point group 2/m. Thus, only single contrast factors need to

be considered.

Taking into account the above results and inserting the

calculated matrices G and E in equation (9), the contrast

factors for diopside and muscovite were calculated as a

function of the Miller indices. Fig. 7 shows the dependence of

the contrast factor on the angle 	 for (a) the ½001�ð100Þ slip

system in diopside and (b, c) for the ½100�ð001Þ and ½110�ð001Þ

slip systems in muscovite, respectively. Here 	 is the angle

between d� and the b axis of the monoclinic lattice (on the {a +

c, b} plane), calculated as

	 ¼ ða=bÞk
��

h2
þ ða=bÞ

2
k2
þ ða=cÞ

2
l2
�

csc2
ð�Þ

� ða=bÞ
2
k2 cot2

ð�Þ � 2ða=cÞhl cotð�Þ cscð�Þ
	�1=2

: ð25Þ

As can be seen from Fig. 7(c), the elastic anisotropy is quite

strong for muscovite in the ½110�ð100Þ slip system for both

screw and edge orientations. This is a typical example where

the effect of the elastic anisotropy cannot be neglected.

4. Conclusions

The dislocation contrast factor is the main parameter repre-

senting the anisotropic nature of the dislocation strain field

and its effects on diffraction phenomena. Until now, the

evaluation of this important parameter has been an ad hoc

procedure, specific for materials showing cubic and hexagonal

symmetry, and carried out through numerical calculations.
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Table 8
Eigenvalues and elastic component for edge and screw dislocations in diopside for the ½001�ð100Þ slip system.

Character p1 p2 p3 E

Edge 0.081 + 1.709i 0.105 + 0.702i 0.162 + 1.056i

0:4491 �0:0306 0 0:0767 �0:1465 0

0:5469 0 �0:7748 0:0075 0

0 0 0 0

2:3396 0:053 0

0:1386 0

0

2
6666664

3
7777775

Screw 0:375þ 0:989i �0:375þ 0:989i 1.019i

0:018 0 0 0 �0:002 0:125

0 �0:004 �0:002 0 0

0:844 0:044 0 0

0:013 0 0

0:001 0:0045

1:184

2
6666664

3
7777775

Table 9
Eigenvalues and elastic component for edge and screw dislocations in muscovite for the ½100�ð001Þ slip system.

Character p1 p2 p3 E

Edge 0.178 + 2.961i �0.037 + 0.594i �0.031 + 2.127i

0:304 0 0 0:039 �0:073 0

0:538 0 �0:838 0:006 0

0 0 0 0

3:334 �0:066 0

0:112 0

0

2
6666664

3
7777775

Screw 3.0853i 2.0384i 0.5606i

0 0 0 0 0 �0:034

0 0:003 0 0 0

0:492 0:006 0 0

0 0 0

0 �0:011

2:032

2
6666664

3
7777775



In this paper a new general approach for evaluating the

dislocation contrast factor is presented and used. It extends

the Klimanek–Kužel procedure to any crystal, independently

of its symmetry and elastic properties. The results agree with

the literature data for cubic and hexagonal materials. Appli-

cations shown for low-symmetry phases are new and demon-

strate the generality of the proposed approach.

APPENDIX A
Elastic component: useful formulae

The analytical expressions for the parameters which appear in

equations (17) and (18) are

Fðp�Þ ¼ ðRe½p�� � Re½p�0 �Þ
2
þ ðIm½p�� � Im½p�0 �Þ

2;

Qðp�Þ ¼ ðjp�j
2
� jp�0 j

2
Þ

2
þ 4ðRe½p�� � Re½p�0 �Þ

� ðjp�0 j
2Re½p�� � jp�j

2Re½p�0 �Þ;

x� ¼ arctan

 
Re½p��

Im½p��

!
;

y�
0

� ¼ arctan

 
Re½p�� � Re½p�0 �

Im½p�� þ Im½p�0 �

!
;

z�
0

� ¼ arctan

 
�1ð�Þ

�2ð�Þ

!
;

�mn
� ¼ argðAm� D� pn�1

� Þ; ð26Þ

where

�1ð�Þ ¼ Im½p��Im½p�0 �½tanðx�Þ þ tanðx�0 Þ�;

�2ð�Þ ¼ jp�j
2
� Re½p��Re½p�0 � þ Im½p��Im½p�0 �; ð27Þ

Re½ � and Im½ � being the real and imaginary part operators,

respectively.
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